navigate Logo

Getting Started

  • Quick Start Guide
  • Software Installation
  • I Want To…

User Guide

  • Supported Hardware
  • Supported File Formats
  • User Interface Walkthrough
  • Setting Up A Microscope
  • Acquiring Data
  • Case Studies

Development

  • Contributing Guidelines
  • Developer Install
  • Software Architecture
  • Feature Container
  • REST-API
  • Plugin Architecture

Troubleshooting & Known Issues

  • Troubleshooting
  • Known Issues

Plugins

  • navigate Plugin Template
  • navigate Confocal Projection
  • navigate at Scale
  • navigate Constant Velocity Acquisition
  • navigate MMCore
  • navigate ilastik Server
  • navigate Photoactivation

Reference

  • Implemented Microscopes
  • Software API
    • navigate.config
    • navigate.controller
    • navigate.log_files
    • navigate.model
      • navigate.model.analysis
      • navigate.model.concurrency
      • navigate.model.data_sources
      • navigate.model.device_startup_functions
      • navigate.model.devices
      • navigate.model.features
        • navigate.model.features.adaptive_optics
        • navigate.model.features.auto_tile_scan
        • navigate.model.features.autofocus
        • navigate.model.features.common_features
        • navigate.model.features.feature_container
        • navigate.model.features.feature_related_functions
        • navigate.model.features.image_writer
        • navigate.model.features.remove_empty_tiles
        • navigate.model.features.restful_features
        • navigate.model.features.update_setting
        • navigate.model.features.volume_search
      • navigate.model.metadata_sources
      • navigate.model.microscope
      • navigate.model.model
      • navigate.model.plugins_model
      • navigate.model.waveforms
    • navigate.tools
    • navigate.view
navigate
  • Acquiring Data
  • Currently Implemented Features
  • navigate.model.features.adaptive_optics
  • navigate.model.features.adaptive_optics.TonyWilson
  • View page source

navigate.model.features.adaptive_optics.TonyWilson

class navigate.model.features.adaptive_optics.TonyWilson(model)

Bases: object

Tony Wilson iterative AO routine

__init__(model)

Initialize the Tony Wilson iterative AO routine

Parameters:

model (Model) – Model object

Methods

__init__(model)

Initialize the Tony Wilson iterative AO routine

build_report()

end_func_data()

End the data

end_func_signal()

End the signal

get_steps(ranges, step_size)

Calculate the number of steps and the position offset

get_tw_frame_num()

Calculate how many frames are needed: iterations x steps x num_coefs

in_func_data([frame_ids])

Run the data

in_func_signal()

Run the signal.

pre_func_data()

Prepare the data

pre_func_signal()

Prepare the signal

process_data(coef[, mode])

Process the data

run(*args)

Run the Tony Wilson iterative AO routine

Attributes

n_modes

Number of modes

n_iter

Number of iterations

n_steps

Number of steps

coef_amp

Coefficient amplitude

done_all

True if all iterations are done, False otherwise

done_itr

True if the current iteration is done, False otherwise

report

detailed report to save as JSON after

model

Model object

mirror_controller

Mirror object

save_report

whether to save report at the end of run

change_coef

List of coefficients to change

mode_names

List of mode names

end_func_data()

End the data

Returns:

True if the data is done, False otherwise

Return type:

bool

end_func_signal()

End the signal

Returns:

True if the signal is done, False otherwise

Return type:

bool

get_steps(ranges, step_size)

Calculate the number of steps and the position offset

Parameters:
  • ranges (int) – Range of the scan

  • step_size (int) – Step size

Returns:

  • int – Number of steps

  • int – Position offset

get_tw_frame_num()

Calculate how many frames are needed: iterations x steps x num_coefs

in_func_data(frame_ids=[])

Run the data

Parameters:

frame_ids (list, optional) – List of frame ids, by default []

Returns:

List of frame ids

Return type:

list

in_func_signal()

Run the signal.

Returns:

True if the signal is done, False otherwise

Return type:

bool

pre_func_data()

Prepare the data

pre_func_signal()

Prepare the signal

process_data(coef, mode='poly')

Process the data

Parameters:
  • coef (int) – Coefficient index

  • mode (str, optional) – Fitting mode, by default “poly”

run(*args)

Run the Tony Wilson iterative AO routine

Parameters:
  • args[0] (dict) – Current microscope state.

  • args[1] (dict) – Autofocus parameters

change_coef

List of coefficients to change

Type:

list

coef_amp

Coefficient amplitude

Type:

float

done_all

True if all iterations are done, False otherwise

Type:

bool

done_itr

True if the current iteration is done, False otherwise

Type:

bool

mirror_controller

Mirror object

Type:

navigate.model.devices.mirrors.mirror_imop.ImagineOpticsMirror

mode_names

List of mode names

Type:

list

model

Model object

Type:

navigate.model.Model

n_iter

Number of iterations

Type:

int

n_modes

Number of modes

Type:

int

n_steps

Number of steps

Type:

int

report

detailed report to save as JSON after

Type:

list

save_report

whether to save report at the end of run

Type:

bool

Previous Next

© Copyright 2025, Dean Lab, UT Southwestern Medical Center.